Representations for Laguerre temperatures

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral representations for multiple Hermite and multiple Laguerre polynomials

converges. Random matrices with external source were introduced and studied by Brézin and Hikami [7, 8, 9, 10, 11], and P. Zinn-Justin [18, 19]. In what follows, we assume that A hasm distinct eigenvalues a1, . . . , am of multiplicities n1, . . . , nm. We consider m fixed and use multi-index notation ~n = (n1, . . . , nm) and |~n| = n1 + · · ·+ nm. The average characteristic polynomial P~n(x) ...

متن کامل

Representations of Fermionic Correlators at Finite Temperatures

The symmetry group of the staggered Fermion transfer matrix in a spatial direction is constructed at finite temperature. Hadron-like operators carrying irreducible representations of this group are written down from the breaking of the zero temperature group. Analysis of the correlators in a free fermion theory suggests new measurements which can test current interpretations. E-mail: sgupta@tif...

متن کامل

Two-wavelet constants for square integrable representations of G/H

In this paper we introduce two-wavelet constants for square integrable representations of homogeneous spaces. We establish the orthogonality relations fo...

متن کامل

Strong convergence for variational inequalities and equilibrium problems and representations

We introduce an implicit method for nding a common element of the set of solutions of systems of equilibrium problems and the set of common xed points of a sequence of nonexpansive mappings and a representation of nonexpansive mappings. Then we prove the strong convergence of the proposed implicit schemes to the unique solution of a variational inequality, which is the optimality condition for ...

متن کامل

Laguerre-Volterra Filters Optimization Based on Laguerre Spectra

New batch and adaptive methods are proposed to optimize the Volterra kernels expansions on a set of Laguerre functions. Each kernel is expanded on an independent Laguerre basis. The expansion coefficients, also called Fourier coefficients, are estimated in the MMSE sense or by applying the gradient technique. An analytical solution to Laguerre poles optimization is provided using the knowledge ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1978

ISSN: 0898-1221

DOI: 10.1016/0898-1221(78)90027-5